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Abstract—Cyber-Physical Systems (CPS) powered by Artificial
Intelligence (AI) have the potential to revolutionize industries by
enabling advanced analytics and autonomous decision-making.
To support resource-intensive applications, there is often a
need to dynamically allocate additional compute resources. The
Edge-Cloud Continuum enables allocation and deployment of
workloads across platforms, including IoT devices, edge clusters,
and cloud environments. However, the growing computational
demands of these systems can unfortunately result in increased
energy consumption and higher carbon emissions.

This paper investigates the development of a carbon-aware
scheduler for the Edge-Cloud Continuum, designed to optimize
workload placement by balancing energy consumption, temporal
variations in carbon intensity and resource availability. Key
contributions of the paper include a spatiotemporal schedul-
ing algorithm, a discrete-event simulator capable of replaying
realistic workloads from the MIT SuperCloud dataset, and a
comprehensive empirical evaluation.

Findings from the paper show substantial reductions in carbon
emissions by prioritizing renewable energy sources and time-
shifting workloads to periods of lower carbon intensity. However,
when clusters operate under high utilization, time-shifting can
inadvertently result in significantly higher emissions. In such
scenarios, simpler greedy algorithms can be more effective.

I. INTRODUCTION

Cyber-Physical Systems (CPS) play an important role in

modern society by seamlessly integrating computations with

physical processes [1]. This integration enables real-time mon-

itoring, automation, and decision-making across a wide range

of industries. As these applications grow in complexity and

scale, the demand for efficient and scalable computational

platforms becomes increasingly important. The rapid advance-

ment in AI further underscores the need for new computing

platforms that can meet growing computational demands.

The Edge-Cloud Continuum [2] is a new paradigm in

distributed computing that aims to unify edge and cloud

computing. By dynamically distributing workloads, it becomes

possible to optimize allocation of computational resources

across platforms. For example, AI-driven CPS applications

can process time-sensitive tasks on local edge servers and run

resource-intensive tasks on remote cloud systems.

However, as the demand for computing continues to grow,

so does energy consumption. Data centers are expected to

account for a significant share of global energy use [3], thus

contributing to increased greenhouse gas emissions and ac-

celerating climate change. Developing technologies to reduce

carbon emissions is therefore critical to reduce environmental

impacts.

Lowering carbon emissions often correlates with energy

efficiency and costs. For example, scheduling jobs in regions

or at times when renewable energy sources, such as solar

or wind power sources, are available can reduce both costs

and environmental impact, as renewable energy is typically

cheaper than fossil-fuel-based alternatives. Micro-grids CPS

can optimize renewable energy usage by delaying task ex-

ecution until sufficient renewable energy is available. Edge

platforms can process data locally to maximize the use of

renewable energy and offload execution to cloud resources

in regions with lower carbon intensity, thereby minimizing

reliance on carbon-intensive infrastructures.

This paper addresses the challenges of designing a scheduler

to minimize the carbon emissions of workloads across an

Edge-Cloud Continuum. Specifically, the paper proposes a

time-shifting algorithm to dynamically allocate workloads

across platforms and delay executions to periods of lower car-

bon intensity. The long-term vision is to integrate the proposed

scheduler with Arrowhead [4] and ColonyOS [5], a meta-

operating system designed to build computing continuums.

The paper is organized as follows: Section II presents

related work. Section III briefly describes the Arrowhead

framework, followed by a definition of the research problem

in Section IV. Section V presents the proposed scheduling

algorithm, which is evaluated in Section VI using real-world

data and simulations. Finally, Section VII concludes the paper

and discusses future research.



II. RELATED WORK

Recent advances in carbon-aware computing have explored

workload scheduling to reduce carbon emissions. For instance,

CASPER [6] is a scheduling algorithm that optimizes workload

placement across cloud regions by leveraging regional varia-

tions in carbon intensity while maintaining latency require-

ments. Temporal workload shifting [7]–[10] has also shown

promise in reducing emissions by aligning computational tasks

with periods of lower carbon intensity. Jagannadharao et al. [9]

investigate time-shifting strategies for Large Language Model

(LLM) training using a two-threshold mechanism to pause and

resume tasks based on carbon emissions. Similarly, Wiesner

et al. [8] propose a framework for temporal workload shifting

in data centers, demonstrating the effectiveness of delaying

tasks to periods of lower carbon intensity. However, these

approaches are limited to suspending and resuming workloads

within a single platform and do not address workload place-

ment across clusters.

To incorporate spatial placement, Hanafy et al. [10] propose

GAIA. This carbon-aware scheduler balances carbon reduction,

performance, and cost by scheduling workloads across clus-

ters in cloud-based HPC environments. CarbonClipper [11]

introduces a learning-augmented algorithm for spatiotemporal

online allocation with deadline constraints across data centers,

taking both temporal and spatial considerations into account.

While previous studies have demonstrated the benefits of

carbon-aware scheduling, this paper specifically addresses

continuum environments, which consist of several connected

heterogeneous compute environments that are often resource-

constrained. For example, in some Industrial IoT (IIoT) use

cases, most data processing occurs at edge nodes. However,

sudden surges in computational demand may require offload-

ing tasks to external cloud servers. In such scenarios, re-

newable energy-powered edge servers must operate alongside

regional data centers with varying CO2 intensities.

Many previous studies, e.g. [12], [13] focus on theoretical

approaches or machine learning-driven frameworks to reduce

carbon emissions or costs. Although these solutions have

merits, they can sometimes be challenging to implement in

real-world systems. In contrast, this paper adopts a practical

implementation perspective, proposing a scheduling algorithm

based on heuristic and straightforward rules.

The main contribution of this paper is a time-shifting

algorithm that incorporates both temporal and spatial consider-

ations for workload placement across heterogeneous platforms.

Furthermore, the paper presents a simulator capable of re-

playing realistic workloads derived from the MIT SuperCloud

dataset [14], providing a tool to evaluate scheduling algorithms

in computing continuum environments. Unlike previous stud-

ies, e.g. [12], [15], which often view computing continuums

as large-scale federated computing infrastructures, this paper

adopts an application-centric perspective, focusing on enabling

applications to seamlessly utilize diverse computational envi-

ronments. The following section discusses the relationship to

Arrowhead and the ColonyOS framework.

III. ARROWHEAD FRAMEWORK

Arrowhead is a service-oriented framework [4] designed to

develop and deploy IoT and CPS applications in industrial

environments. It provides tools and services to seamlessly

integrate devices, services, and systems. Central to the Ar-

rowhead architecture is the concept of local clouds [16],

which are self-contained environments where services can

operate independently without relying on external clouds or

systems. However, to support advanced analytical tasks or

computationally heavy AI applications, there is often a need

to dynamically allocate additional compute resources, which

may exceed the capacity of local clouds.

There are two primary approaches to adding additional

computing capacity to local clouds. The first approach is to

export relevant data to an external environment for analytical

processing. Using Arrowhead’s existing secure local cloud

interaction mechanisms, data can be securely transmitted to

a cloud-based service. The second approach is to extend the

local cloud by adding external computing resources. This can

be achieved using trusted VPN tunnels to securely execute

analytics on a trusted cloud service. Both of these methods

enable real-time monitoring and visualization of the local

cloud’s carbon footprint and resource allocation optimization.

Another method of adding more computing capacity is

to leverage ColonyOS, a framework designed to unify and

manage distributed computing resources across platforms as

part of a computing continuum. ColonyOS enables a grid-

like computing network to form, where computing resources,

whether local, edge, or cloud, can be seamlessly added and

utilized. By integrating ColonyOS with Arrowhead it becomes

possible to dynamically extend the computational capacity

of local clouds by leveraging edge servers or external cloud

environments whenever needed.

A detailed explanation of how to extend local clouds or

integrate with ColonyOS is beyond the scope of this paper.

Instead, this work focuses specifically on the development

of a carbon-aware scheduler, which can be integrated with

ColonyOS and Arrowhead. The next section presents a math-

ematical formulation of the problem which serves as the

foundation for defining the proposed time-shifting algorithm.

IV. PROBLEM FORMULATION

Let C represent a set of edge or cloud clusters, with c denot-

ing an individual cluster in C. Each cluster c is characterized

by a CO2 intensity function ic(t), which provides the predicted

carbon intensity of using the cluster at a given time t, measured

in grams of CO2 per kilowatt-hour (gCO2/kWh).

Let P be a set of processes, with p representing an indi-

vidual process in P . Each process p is defined by a power

consumption function ep(t), measured in watts (W), which

returns the power required to execute the process at time t.

Furthermore, each process p has a deadline function d(p),
specifying the remaining time before it must start. The set of

processes running on cluster c at time t is denoted Pc(t), while

tsubmitted(p), tstart(p) and tend(p) represent the submission, start

and end times of process p, respectively.



The carbon emissions of an individual process can then be

calculated as shown in Equation (1):

Ep =

∫ tend(p)

tstart(p)

ep(t) · ic(t) dt (1)

The cumulative carbon emissions E for all processes and

clusters can be formulated as a multi-objective minimization

problem, as shown in Equation (2):

minE, where E =
∑

p∈P

Ep, (2)

minimizing over all possible assignments of processes to

clusters subject to the constraints:

tstart(p) ≤ tsubmitted(p) + d(p), ∀p ∈ P (3)

∑

p∈Pc(t)

r(p) ≤ R(c), ∀t and c ∈ C (4)

Here, r(p) represents the resource requirements of a process

p, and R(c) represents the total resource capacity of a cluster c.

The goal is to develop a scheduling algorithm that minimizes

E, while ensuring all processes meet their respective deadlines

and also respecting resource availability.

Several strategies can be used to reduce carbon emissions.

One strategy could be to assign energy intensive processes to

clusters with low CO2 intensity. Another strategy could be to

maximize utilization of low CO2 clusters by dynamically bal-

ancing workloads over time. Finally, processes can be delayed

to align their execution with periods when the predicted CO2

intensity of clusters is lower, taking advantage of temporal

fluctuations in carbon intensity. The following section dis-

cusses how to leverage all these strategies to optimize carbon

efficiency.

V. SCHEDULING ALGORITHMS

Given that many scheduling problems with multiple con-

straints (e.g., deadlines, resource availability, etc.) are NP-

hard, heuristic-based approaches can be used to find approxi-

mate solutions within feasible computational limits. Note that

heuristics trade precision and accuracy for computational effi-

ciency to solve complex optimization problems using simpler

rules.

A. Greedy Cluster Selection

A simple approach is to design a greedy scheduling algo-

rithm that assigns processes to clusters based on their CO2

intensity. Algorithm 1 describes an algorithm that assigns

processes to the cluster with the lowest CO2 intensity, The al-

gorithm consists of two main functions: SCHEDULE and HAS-

FREERESOURCE. The HASFREERESOURCE function checks

whether a specific cluster c has sufficient resources available.

The SCHEDULE function iterates through the clusters, select

clusters with available resources, and then assigns a process p

to the cluster with the lowest CO2 intensity.

Algorithm 1 Greedy Cluster Selection

1: function SCHEDULE(p, C)
2: Cavailable ← {c ∈ C | HASFREERESOURCES(c, p)}
3: if Cavailable ̸= ∅ then
4: Assign p to cselected ← argminc∈Cavailable

ic(tcurrent)
5: end if
6: end function

7: function HASFREERESOURCES(c, p)
8: return r(p) +

∑
p̃∈Pc(tcurrent)

r(p̃) ≤ R(c)
9: end function

The main advantage of Algorithm 1 is simplicity. However,

it does not take into account power consumption or deadlines

of processes, which may result in suboptimal performance.

Despite these limitations, the algorithm serves as a useful

baseline for evaluating more complex scheduling algorithms.

Fig. 1: Data structures used by time-shifting algorithm. Note

that the allocation space may have overlapping processes if

the cluster has many resources.

B. Time-shifting

To leverage temporal variations in CO2 intensity, it is

necessary to delay execution of processes until the CO2

intensity of the clusters reaches its lowest level. This approach

requires predicting the CO2 intensity of clusters over time

and reserving time slots for running processes given their

remaining deadlines before they to be started.

Figure 1 illustrates the data structures used by the pro-

posed time-shifting algorithm. Each process is modeled as a

data structure containing its predicted power usage, estimated

execution time, planned start time, and assigned cluster. It

is assumed that users specify a walltime, which defines the

maximum duration a process can wait before it must run.

A hash table is used to store lists of reserved processes

for each cluster. From these lists, it is possible to derive a

matrix A : C × T → Z representing the Process Allocation

Space, where C is the set of clusters and T is the set

of discrete times steps, which can be used to reserve and



(a) Workload example. (b) Carbon intensity example. (c) K-means clustering of the dataset.

Fig. 2: Workload examples.

determine available resources at any future time. The entry

A(c, t) =
∑

p∈Pc(t)
r(p) represents the amount of resources

scheduled to be used on cluster c at the time instance t.

Algorithm 2 Time Shifting

1: function SCHEDULE(p,A)
2: ebest ←∞, cbest ← None, tbest ← None
3: for c ∈ C do
4: for t ∈ [tcurrent, tcurrent + d(p)] do
5: if HASFREERESOURCES(c, t, p,A) then
6: e← EMISSION(p, c, t)
7: if e < ebest then
8: ebest ← e, cbest ← c, tbest ← t
9: end if

10: end if
11: end for
12: end for
13: if cbest ̸= None then
14: p.planned time← tbest

15: p.planned cluster← cbest

16: # Update Process Allocation matrix
17: for t ∈ [tbest, tbest + p.duration) do
18: A[cbest][t]← A[cbest][t] + r(p)
19: end for
20: end if
21: end function

22: function HASFREERESOURCES(c, tstart, p,A)
23: for t ∈ [tstart, tstart + p.duration) do
24: if A[c][t] + r(p) > R(c) then
25: return false
26: end if
27: end for
28: return true
29: end function

30: function EMISSION(p, c, tstart)
31: emission← 0
32: for t ∈ [tstart, tstart + p.duration) do
33: emission← emission + ep(t) · ic(t)
34: end for
35: return emission
36: end function

Algorithm 2 outlines a method for assigning processes to

clusters and determining an optimal start time by searching the

Process Allocation Space. It calculates the estimated emissions

for a process at different time steps to identify the scheduling

option with the lowest emission. The HASFREERESOURCE

function checks if a cluster has sufficient resources available

at a specified time in the future. The function EMISSION

estimates the carbon emissions of running a process at a

given time. The SCHEDULE function finds consecutive time

slots between the current time and the process’s deadline that

minimize the carbon emission for running the process.

VI. EVALUATION

To evaluate the performance of the proposed time-shifting

scheduling algorithm, a discrete event simulator was developed

to model workload execution. The simulator takes a dataset of

time series workloads and a time series of CO2 intensity as

input and then replays the workloads across a specified set of

clusters. Each cluster is associated with a CO2 intensity log

file and a predefined number of available GPUs, with GPUs

serving as the only resource type for simplicity. The simulator

can be configured to use different scheduling algorithms

and outputs a dataset and statistical metrics generated from

replaying the traces.

A. Dataset generation

The workload trace was extracted from the MIT SuperCloud

dataset [14], which contains a time series of workloads that

include power consumption. Note that the dataset does not

contain the total energy consumption, but only the energy

consumption of the GPUs collected using the nvidia-smi

command. CO2 intensity data for various clusters was obtained

from Electricity Maps [17], which includes 24-hour predic-

tions of CO2 intensity.

For the experiments, a dataset of 10,000 workloads was

randomly selected from the MIT SuperCloud dataset. Several

log files were generated to record the start times of each work-

load. To control the rate at which workloads were replayed, a

random waiting time between workloads was sampled from an

exponential distribution, defined as waiting time ∼ Exp
(

1
rate

)

·

scale, with rate = 1 and scale = 100 seconds. Both the CO2

intensity and workload traces were re-sampled at a resolution

of 1 second, meaning that the Process Allocation Spaces also

had a 1-second resolution.



Figure 2 shows an example of the dataset1, including a

K-means clustering analysis that illustrates the relationship

between power consumption and execution time. The K-means

cluster reveals that the majority of workloads are short-lived

and consume relatively small amounts of energy. However, a

few workloads run for extended durations, reserving a GPU

for long periods. This can be problematic if such workloads

consume little energy, as they could prevent high-energy

workloads from utilizing GPUs on clusters with lower CO2

intensity. Additionally, it is quite common in the dataset for

workloads to have low-energy period patterns followed by

high-energy bursts. This means that the mean power usage

might be relatively low, even though the GPU is fully utilized

for extended durations. Figure 2a shows an example of such

a workload.

Fig. 3: Experiment 1 results.

1) Experiment 1 - Time-shifting: This experiment evaluated

how effective the time-shifting algorithm was in reducing

carbon emissions under no resource constraints. The simulator

was configured to use a single cluster equipped with a large

number of GPUs, ensuring that the cluster never ran out

of resources. The CO2 intensity dataset associated with the

cluster was obtained from southern Sweden (SE-SE4). The

results presented in Figure 3 show that the time-shifting al-

gorithm outperformed the Greedy algorithm, reducing carbon

emissions by 61%.

Figure 4 illustrates the CO2 intensity over time and the

carbon emissions of the time-shifting algorithm when process

deadlines were set to 24 hours. As can be seen, the time-

shifting algorithm effectively reduced emissions by leveraging

periods of low CO2 intensity, which aligns well with the

expected behavior. However, when the process deadlines were

reduced to 12 hours and 6 hours, the effectiveness of the time-

shifting algorithm decreased, as shown in Figure 3.

1The dataset and the simulator will be made publicly available upon
acceptance of the paper.

Fig. 4: Experiment 1 results - Time reservations and CO2

intensity.

Fig. 5: Experiment 2 results.

2) Experiment 2 - High Utilization: This experiment aimed

to evaluate the performance of the scheduling algorithms under

conditions where the low CO2 intensity clusters become fully

utilized. The simulator was configured with two clusters. The

first cluster, referred to as the green cluster, consisted of 32

GPUs located in northern Sweden (SE-SE1) and characterized

by very low CO2 intensity. The second cluster, referred to as

the brown cluster, consisted of 127 GPUs, and was located

in Poland, with significantly higher CO2 intensity. This setup

intentionally created an imbalance between green and brown

compute resources and thus provided a controlled environment

to assess how effectively the algorithms utilized renewable

energy.

The results, presented in Figure 5, indicate that the time-

shifting algorithm performed significantly worse than the

simple Greedy algorithm. The reasons for this performance

difference will be discussed in detail in the next section.



VII. DISCUSSION

This paper proposes a carbon-aware scheduling algorithm

for CPS applications operating within an Edge-Cloud Contin-

uum. The experimental results demonstrate that time-shifting

workloads can significantly reduce carbon emissions. How-

ever, when clusters become exhausted, time-shifting may

instead lead to a substantial increase in carbon emissions.

A limitation of the time-shifting algorithm is its tendency

to concentrate processes on clusters at certain start times.

Although this approach reduced emissions in Experiment 1,

it led to unbalanced resource utilization in Experiment 2.

As more processes were reserved for future execution and

available time slots became scarce, the algorithm’s flexibility

significantly decreased, forcing processes to be executed on

the brown cluster.

In contrast, the Greedy algorithm demonstrated better per-

formance by prioritizing the green cluster. One explanation for

this is the randomized nature of the dataset and the fact that the

Greedy algorithm naturally balanced long- and short-lived pro-

cesses, which resulted in a more even workload distribution. A

straightforward improvement to the time-shifting algorithm is

to assign new processes to the latest available time slot rather

than the optimal start time when cluster resources become

exhausted, thus making the time-shifting algorithm perform

as the Greedy algorithm when running out of resources and

available time slots.

Handling processes that require immediate execution is

another challenge. A simple solution is to over-provision

the clusters to ensure sufficient capacity is always available.

Alternatively, ongoing processes could be suspended to create

room for new processes. Another potential solution could

be to preemptively reschedule processes to other clusters or

time slots to make room for urgent or high-energy processes.

However, this approach would inevitably increase the algo-

rithm’s computational complexity, as it would be required to

recursively evaluate the costs of reassigning already sched-

uled processes. Developing an efficient preemptive scheduling

algorithm is an interesting topic for future research.

Another potential drawback of the time-shifting algorithm

is that it can cause fragmentation in the Process Alloca-

tion Space. When a large number of short-lived processes

are scheduled, the Process Allocation Space could become

fragmented, making it challenging to allocate resources to

long-lived processes. This phenomenon is somewhat similar

to fragmentation in regular file systems. A potential solution

to this problem could be to compress the Process Allocation

Space. However, this approach could then result in suboptimal

start times, thus reducing the benefits of time-shifting. More

research is needed to explore the trade-offs of compressing the

Process Allocation Space and the impact on carbon emissions.

To conclude, the paper has proposed a novel approach

to carbon-aware scheduling for Edge-Cloud Continuums that

could have significant implications for future CPS applica-

tions depending on compute-intensive AI workloads. In the

future, we plan to integrate the scheduler with Arrowhead and

ColonyOS, followed by real-world deployment and validation

with real-world applications.
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