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Abstract—Cyber-Physical Systems (CPS) powered by Artificial
Intelligence (AI) have the potential to revolutionize industries by
enabling advanced analytics and autonomous decision-making.
To support resource-intensive applications, there is often a
need to dynamically allocate additional compute resources. The
Edge-Cloud Continuum enables allocation and deployment of
workloads across platforms, including IoT devices, edge clusters,
and cloud environments. However, the growing computational
demands of these systems can unfortunately result in increased
energy consumption and higher carbon emissions.

This paper investigates the development of a carbon-aware
scheduler for the Edge-Cloud Continuum, designed to optimize
workload placement by balancing energy consumption, temporal
variations in carbon intensity and resource availability. Key
contributions of the paper include a spatiotemporal schedul-
ing algorithm, a discrete-event simulator capable of replaying
realistic workloads from the MIT SuperCloud dataset, and a
comprehensive empirical evaluation.

Findings from the paper show substantial reductions in carbon
emissions by prioritizing renewable energy sources and time-
shifting workloads to periods of lower carbon intensity. However,
when clusters operate under high utilization, time-shifting can
inadvertently result in significantly higher emissions. In such
scenarios, simpler greedy algorithms can be more effective.

I. INTRODUCTION

Cyber-Physical Systems (CPS) play an important role in
modern society by seamlessly integrating computations with
physical processes [1]. This integration enables real-time mon-
itoring, automation, and decision-making across a wide range
of industries. As these applications grow in complexity and
scale, the demand for efficient and scalable computational
platforms becomes increasingly important. The rapid advance-
ment in Al further underscores the need for new computing
platforms that can meet growing computational demands.

The Edge-Cloud Continuum [2] is a new paradigm in
distributed computing that aims to unify edge and cloud
computing. By dynamically distributing workloads, it becomes
possible to optimize allocation of computational resources
across platforms. For example, Al-driven CPS applications

can process time-sensitive tasks on local edge servers and run
resource-intensive tasks on remote cloud systems.

However, as the demand for computing continues to grow,
so does energy consumption. Data centers are expected to
account for a significant share of global energy use [3], thus
contributing to increased greenhouse gas emissions and ac-
celerating climate change. Developing technologies to reduce
carbon emissions is therefore critical to reduce environmental
impacts.

Lowering carbon emissions often correlates with energy
efficiency and costs. For example, scheduling jobs in regions
or at times when renewable energy sources, such as solar
or wind power sources, are available can reduce both costs
and environmental impact, as renewable energy is typically
cheaper than fossil-fuel-based alternatives. Micro-grids CPS
can optimize renewable energy usage by delaying task ex-
ecution until sufficient renewable energy is available. Edge
platforms can process data locally to maximize the use of
renewable energy and offload execution to cloud resources
in regions with lower carbon intensity, thereby minimizing
reliance on carbon-intensive infrastructures.

This paper addresses the challenges of designing a scheduler
to minimize the carbon emissions of workloads across an
Edge-Cloud Continuum. Specifically, the paper proposes a
time-shifting algorithm to dynamically allocate workloads
across platforms and delay executions to periods of lower car-
bon intensity. The long-term vision is to integrate the proposed
scheduler with Arrowhead [4] and ColonyOS [5], a meta-
operating system designed to build computing continuums.

The paper is organized as follows: Section II presents
related work. Section III briefly describes the Arrowhead
framework, followed by a definition of the research problem
in Section IV. Section V presents the proposed scheduling
algorithm, which is evaluated in Section VI using real-world
data and simulations. Finally, Section VII concludes the paper
and discusses future research.



II. RELATED WORK

Recent advances in carbon-aware computing have explored
workload scheduling to reduce carbon emissions. For instance,
CASPER [6] is a scheduling algorithm that optimizes workload
placement across cloud regions by leveraging regional varia-
tions in carbon intensity while maintaining latency require-
ments. Temporal workload shifting [7]-[10] has also shown
promise in reducing emissions by aligning computational tasks
with periods of lower carbon intensity. Jagannadharao et al. [9]
investigate time-shifting strategies for Large Language Model
(LLM) training using a two-threshold mechanism to pause and
resume tasks based on carbon emissions. Similarly, Wiesner
et al. [8] propose a framework for temporal workload shifting
in data centers, demonstrating the effectiveness of delaying
tasks to periods of lower carbon intensity. However, these
approaches are limited to suspending and resuming workloads
within a single platform and do not address workload place-
ment across clusters.

To incorporate spatial placement, Hanafy et al. [10] propose
GAIA. This carbon-aware scheduler balances carbon reduction,
performance, and cost by scheduling workloads across clus-
ters in cloud-based HPC environments. CarbonClipper [11]
introduces a learning-augmented algorithm for spatiotemporal
online allocation with deadline constraints across data centers,
taking both temporal and spatial considerations into account.

While previous studies have demonstrated the benefits of
carbon-aware scheduling, this paper specifically addresses
continuum environments, which consist of several connected
heterogeneous compute environments that are often resource-
constrained. For example, in some Industrial IoT (IIoT) use
cases, most data processing occurs at edge nodes. However,
sudden surges in computational demand may require offload-
ing tasks to external cloud servers. In such scenarios, re-
newable energy-powered edge servers must operate alongside
regional data centers with varying COs intensities.

Many previous studies, e.g. [12], [13] focus on theoretical
approaches or machine learning-driven frameworks to reduce
carbon emissions or costs. Although these solutions have
merits, they can sometimes be challenging to implement in
real-world systems. In contrast, this paper adopts a practical
implementation perspective, proposing a scheduling algorithm
based on heuristic and straightforward rules.

The main contribution of this paper is a time-shifting
algorithm that incorporates both temporal and spatial consider-
ations for workload placement across heterogeneous platforms.
Furthermore, the paper presents a simulator capable of re-
playing realistic workloads derived from the MIT SuperCloud
dataset [14], providing a tool to evaluate scheduling algorithms
in computing continuum environments. Unlike previous stud-
ies, e.g. [12], [15], which often view computing continuums
as large-scale federated computing infrastructures, this paper
adopts an application-centric perspective, focusing on enabling
applications to seamlessly utilize diverse computational envi-
ronments. The following section discusses the relationship to
Arrowhead and the ColonyOS framework.

III. ARROWHEAD FRAMEWORK

Arrowhead is a service-oriented framework [4] designed to
develop and deploy IoT and CPS applications in industrial
environments. It provides tools and services to seamlessly
integrate devices, services, and systems. Central to the Ar-
rowhead architecture is the concept of local clouds [16],
which are self-contained environments where services can
operate independently without relying on external clouds or
systems. However, to support advanced analytical tasks or
computationally heavy Al applications, there is often a need
to dynamically allocate additional compute resources, which
may exceed the capacity of local clouds.

There are two primary approaches to adding additional
computing capacity to local clouds. The first approach is to
export relevant data to an external environment for analytical
processing. Using Arrowhead’s existing secure local cloud
interaction mechanisms, data can be securely transmitted to
a cloud-based service. The second approach is to extend the
local cloud by adding external computing resources. This can
be achieved using trusted VPN tunnels to securely execute
analytics on a trusted cloud service. Both of these methods
enable real-time monitoring and visualization of the local
cloud’s carbon footprint and resource allocation optimization.

Another method of adding more computing capacity is
to leverage ColonyOS, a framework designed to unify and
manage distributed computing resources across platforms as
part of a computing continuum. ColonyOS enables a grid-
like computing network to form, where computing resources,
whether local, edge, or cloud, can be seamlessly added and
utilized. By integrating ColonyOS with Arrowhead it becomes
possible to dynamically extend the computational capacity
of local clouds by leveraging edge servers or external cloud
environments whenever needed.

A detailed explanation of how to extend local clouds or
integrate with ColonyOS is beyond the scope of this paper.
Instead, this work focuses specifically on the development
of a carbon-aware scheduler, which can be integrated with
ColonyOS and Arrowhead. The next section presents a math-
ematical formulation of the problem which serves as the
foundation for defining the proposed time-shifting algorithm.

IV. PROBLEM FORMULATION

Let C represent a set of edge or cloud clusters, with ¢ denot-
ing an individual cluster in C. Each cluster c is characterized
by a CO;, intensity function i.(t), which provides the predicted
carbon intensity of using the cluster at a given time ¢, measured
in grams of CO; per kilowatt-hour (gCO2/kWh).

Let P be a set of processes, with p representing an indi-
vidual process in P. Each process p is defined by a power
consumption function e,(t), measured in watts (W), which
returns the power required to execute the process at time t.
Furthermore, each process p has a deadline function d(p),
specifying the remaining time before it must start. The set of
processes running on cluster c at time ¢ is denoted P.(t), while
tsubmitted () Tstart(P) and tena(p) represent the submission, start
and end times of process p, respectively.



The carbon emissions of an individual process can then be
calculated as shown in Equation (1):

tend ()
E, :/ e, (1) - io(t) dt 0
tstan(P)
The cumulative carbon emissions E' for all processes and
clusters can be formulated as a multi-objective minimization
problem, as shown in Equation (2):

min E, where E = Z E,, )
peP

minimizing over all possible assignments of processes to
clusters subject to the constraints:

tstart(p) S tsubmitted(p) + d(p), VP epr (3)

Z r(p) < R(c), VtandceC 4)
pEP.(t)

Here, r(p) represents the resource requirements of a process
p, and R(c) represents the total resource capacity of a cluster c.
The goal is to develop a scheduling algorithm that minimizes
E, while ensuring all processes meet their respective deadlines
and also respecting resource availability.

Several strategies can be used to reduce carbon emissions.
One strategy could be to assign energy intensive processes to
clusters with low COs intensity. Another strategy could be to
maximize utilization of low COz clusters by dynamically bal-
ancing workloads over time. Finally, processes can be delayed
to align their execution with periods when the predicted CO;
intensity of clusters is lower, taking advantage of temporal
fluctuations in carbon intensity. The following section dis-
cusses how to leverage all these strategies to optimize carbon
efficiency.

V. SCHEDULING ALGORITHMS

Given that many scheduling problems with multiple con-
straints (e.g., deadlines, resource availability, etc.) are NP-
hard, heuristic-based approaches can be used to find approxi-
mate solutions within feasible computational limits. Note that
heuristics trade precision and accuracy for computational effi-
ciency to solve complex optimization problems using simpler
rules.

A. Greedy Cluster Selection

A simple approach is to design a greedy scheduling algo-
rithm that assigns processes to clusters based on their COq
intensity. Algorithm 1 describes an algorithm that assigns
processes to the cluster with the lowest CO4 intensity, The al-
gorithm consists of two main functions: SCHEDULE and HAS-
FREERESOURCE. The HASFREERESOURCE function checks
whether a specific cluster ¢ has sufficient resources available.
The SCHEDULE function iterates through the clusters, select
clusters with available resources, and then assigns a process p
to the cluster with the lowest CO5 intensity.

Algorithm 1 Greedy Cluster Selection

1: function SCHEDULE(p, C)

2 Chvaitable < {c € C'| HASFREERESOURCES (¢, p) }

3 if Cavailable 75 (0 then

4: Assign p tO Cselected — arg MiNee ey e e (teurrent)
5 end if

6: end function

7: function HASFREERESOURCES(c, p)

8: return 1 (p) + > 5c p (romen) T(P) < R(c)

9: end function

The main advantage of Algorithm 1 is simplicity. However,
it does not take into account power consumption or deadlines
of processes, which may result in suboptimal performance.
Despite these limitations, the algorithm serves as a useful
baseline for evaluating more complex scheduling algorithms.

Process Reservations (R)

 Cluster 1 —» Process B
 Cluster 2 :—-- Process E | Process F
""""" \ J
' B
Cluster 1 Process Allocation Space
Process A [T T T T I T T TTI11]
l’mv%sBFMII||II|II|||||||
Cluster 2
Process C
Process 1}
Process E EEEEEEE

'{fmum

CUFFEHT
Optimal start time Process E
Fig. 1: Data structures used by time-shifting algorithm. Note
that the allocation space may have overlapping processes if
the cluster has many resources.

B. Time-shifting

To leverage temporal variations in CO; intensity, it is
necessary to delay execution of processes until the COq
intensity of the clusters reaches its lowest level. This approach
requires predicting the COs intensity of clusters over time
and reserving time slots for running processes given their
remaining deadlines before they to be started.

Figure 1 illustrates the data structures used by the pro-
posed time-shifting algorithm. Each process is modeled as a
data structure containing its predicted power usage, estimated
execution time, planned start time, and assigned cluster. It
is assumed that users specify a walltime, which defines the
maximum duration a process can wait before it must run.

A hash table is used to store lists of reserved processes
for each cluster. From these lists, it is possible to derive a
matrix A : C x T — Z representing the Process Allocation
Space, where C' is the set of clusters and T is the set
of discrete times steps, which can be used to reserve and
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Fig. 2: Workload examples.

determine available resources at any future time. The entry
A(e,t) = 32 ,cp. 1) r(p) represents the amount of resources
scheduled to be used on cluster c at the time instance .

Algorithm 2 Time Shifting

1: function SCHEDULE(p, A)
2 Ehest <— 00, Cpest <— None, tpest < None
3 for c € C do
4: for t € [tcurrem, teurrent + d(p)] do
5: if HASFREERESOURCES(c, t, p, A) then
6: e < EMISSION(p, ¢, t)
7 if € < epes then
8: €hest $— €, Chest < C, thest < ¢
9: end if
10: end if
11: end for
12: end for
13: if cvhest # None then
14: p.planned_time <— thes
15: p.planned_cluster <— Cpest
16: # Update Process Allocation matrix
17: for ¢ € [toest, tvest + p.duration) do
18: Alcsen][t] + Alcwen] [t] + (p)
19: end for
20: end if
21: end function
22: function HASFREERESOURCES(c, tstart, P, A)
23: for ¢ € [tgar, tsarn + p-duration) do
24: if A[d][t] + r(p) > R(c) then
25: return false
26: end if
27: end for
28: return true
29: end function
30: function EMISSION(p, ¢, tstart)
31: emission < 0
32: for ¢ € [tgar, tstarn + p-duration) do
33: emission <— emission + e, (t) - . (t)
34: end for
35: return emission
36: end function

Algorithm 2 outlines a method for assigning processes to
clusters and determining an optimal start time by searching the
Process Allocation Space. It calculates the estimated emissions

for a process at different time steps to identify the scheduling
option with the lowest emission. The HASFREERESOURCE
function checks if a cluster has sufficient resources available
at a specified time in the future. The function EMISSION
estimates the carbon emissions of running a process at a
given time. The SCHEDULE function finds consecutive time
slots between the current time and the process’s deadline that
minimize the carbon emission for running the process.

VI. EVALUATION

To evaluate the performance of the proposed time-shifting
scheduling algorithm, a discrete event simulator was developed
to model workload execution. The simulator takes a dataset of
time series workloads and a time series of CO; intensity as
input and then replays the workloads across a specified set of
clusters. Each cluster is associated with a COq intensity log
file and a predefined number of available GPUs, with GPUs
serving as the only resource type for simplicity. The simulator
can be configured to use different scheduling algorithms
and outputs a dataset and statistical metrics generated from
replaying the traces.

A. Dataset generation

The workload trace was extracted from the MIT SuperCloud
dataset [14], which contains a time series of workloads that
include power consumption. Note that the dataset does not
contain the total energy consumption, but only the energy
consumption of the GPUs collected using the nvidia-smi
command. CO; intensity data for various clusters was obtained
from Electricity Maps [17], which includes 24-hour predic-
tions of CO4 intensity.

For the experiments, a dataset of 10,000 workloads was
randomly selected from the MIT SuperCloud dataset. Several
log files were generated to record the start times of each work-
load. To control the rate at which workloads were replayed, a
random waiting time between workloads was sampled from an
exponential distribution, defined as waiting_time ~ Exp (rate) .
scale, with rate = 1 and scale = 100 seconds. Both the CO
intensity and workload traces were re-sampled at a resolution
of 1 second, meaning that the Process Allocation Spaces also
had a 1-second resolution.



Figure 2 shows an example of the dataset!, including a
K-means clustering analysis that illustrates the relationship
between power consumption and execution time. The K-means
cluster reveals that the majority of workloads are short-lived
and consume relatively small amounts of energy. However, a
few workloads run for extended durations, reserving a GPU
for long periods. This can be problematic if such workloads
consume little energy, as they could prevent high-energy
workloads from utilizing GPUs on clusters with lower CO;
intensity. Additionally, it is quite common in the dataset for
workloads to have low-energy period patterns followed by
high-energy bursts. This means that the mean power usage
might be relatively low, even though the GPU is fully utilized
for extended durations. Figure 2a shows an example of such
a workload.
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Fig. 3: Experiment 1 results.

1) Experiment 1 - Time-shifting: This experiment evaluated
how effective the time-shifting algorithm was in reducing
carbon emissions under no resource constraints. The simulator
was configured to use a single cluster equipped with a large
number of GPUs, ensuring that the cluster never ran out
of resources. The CO- intensity dataset associated with the
cluster was obtained from southern Sweden (SE-SE4). The
results presented in Figure 3 show that the time-shifting al-
gorithm outperformed the Greedy algorithm, reducing carbon
emissions by 61%.

Figure 4 illustrates the CO, intensity over time and the
carbon emissions of the time-shifting algorithm when process
deadlines were set to 24 hours. As can be seen, the time-
shifting algorithm effectively reduced emissions by leveraging
periods of low CO; intensity, which aligns well with the
expected behavior. However, when the process deadlines were
reduced to 12 hours and 6 hours, the effectiveness of the time-
shifting algorithm decreased, as shown in Figure 3.

IThe dataset and the simulator will be made publicly available upon
acceptance of the paper.
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Fig. 5: Experiment 2 results.

2) Experiment 2 - High Utilization: This experiment aimed
to evaluate the performance of the scheduling algorithms under
conditions where the low COs intensity clusters become fully
utilized. The simulator was configured with two clusters. The
first cluster, referred to as the green cluster, consisted of 32
GPUs located in northern Sweden (SE-SE1) and characterized
by very low CO; intensity. The second cluster, referred to as
the brown cluster, consisted of 127 GPUs, and was located
in Poland, with significantly higher COs intensity. This setup
intentionally created an imbalance between green and brown
compute resources and thus provided a controlled environment
to assess how effectively the algorithms utilized renewable
energy.

The results, presented in Figure 5, indicate that the time-
shifting algorithm performed significantly worse than the
simple Greedy algorithm. The reasons for this performance
difference will be discussed in detail in the next section.



VII. DISCUSSION

This paper proposes a carbon-aware scheduling algorithm
for CPS applications operating within an Edge-Cloud Contin-
uum. The experimental results demonstrate that time-shifting
workloads can significantly reduce carbon emissions. How-
ever, when clusters become exhausted, time-shifting may
instead lead to a substantial increase in carbon emissions.

A limitation of the time-shifting algorithm is its tendency
to concentrate processes on clusters at certain start times.
Although this approach reduced emissions in Experiment 1,
it led to unbalanced resource utilization in Experiment 2.
As more processes were reserved for future execution and
available time slots became scarce, the algorithm’s flexibility
significantly decreased, forcing processes to be executed on
the brown cluster.

In contrast, the Greedy algorithm demonstrated better per-
formance by prioritizing the green cluster. One explanation for
this is the randomized nature of the dataset and the fact that the
Greedy algorithm naturally balanced long- and short-lived pro-
cesses, which resulted in a more even workload distribution. A
straightforward improvement to the time-shifting algorithm is
to assign new processes to the latest available time slot rather
than the optimal start time when cluster resources become
exhausted, thus making the time-shifting algorithm perform
as the Greedy algorithm when running out of resources and
available time slots.

Handling processes that require immediate execution is
another challenge. A simple solution is to over-provision
the clusters to ensure sufficient capacity is always available.
Alternatively, ongoing processes could be suspended to create
room for new processes. Another potential solution could
be to preemptively reschedule processes to other clusters or
time slots to make room for urgent or high-energy processes.
However, this approach would inevitably increase the algo-
rithm’s computational complexity, as it would be required to
recursively evaluate the costs of reassigning already sched-
uled processes. Developing an efficient preemptive scheduling
algorithm is an interesting topic for future research.

Another potential drawback of the time-shifting algorithm
is that it can cause fragmentation in the Process Alloca-
tion Space. When a large number of short-lived processes
are scheduled, the Process Allocation Space could become
fragmented, making it challenging to allocate resources to
long-lived processes. This phenomenon is somewhat similar
to fragmentation in regular file systems. A potential solution
to this problem could be to compress the Process Allocation
Space. However, this approach could then result in suboptimal
start times, thus reducing the benefits of time-shifting. More
research is needed to explore the trade-offs of compressing the
Process Allocation Space and the impact on carbon emissions.

To conclude, the paper has proposed a novel approach
to carbon-aware scheduling for Edge-Cloud Continuums that
could have significant implications for future CPS applica-
tions depending on compute-intensive Al workloads. In the
future, we plan to integrate the scheduler with Arrowhead and

ColonyOS, followed by real-world deployment and validation
with real-world applications.
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